

Alberto Lusiani

INFN and Scuola Normale Superiore Pisa

(on behalf of the SuperB collaboration)

SECOND WORKSHOP ON FLAVOR PHYSICS IN THE LHC ERA IFIC, VALENCIA, 16-18 JANUARY 2012

A.Lusiani (INFN & SNS, Pisa)

Physics at SuperB

B-factories overconstrained Standard Model & searched for New Physics

CKM matrix phase main source of CP violation (2008 Nobel prize to M.Kobayashi & T.Maskawa)
 no evidence (but perhaps few glimpses) of Physics beyond the Standard Model

The intensity & precision frontier

energy frontier

▶ NP existence & scale through effects of ~on-shell processes with definite energy threshold

intensity & precision frontier (low-energy)

- ► NP existence & flavour structure through effects of off-shell processes
- processes very suppressed or even forbidden in the SM
 - FCNC processes $(b \to s\gamma, B_{s,d} \to \mu^+\mu^-, \mu \to e\gamma, \tau \to \mu\gamma, K \to \pi\nu\nu)$
 - FCNC & CPV in B_{s,d} and D decay/mixing
 - CPV effects in the electron/neutron EDMs, *d_{e,n,...}*
- processes predicted with high precision in the SM
 - EW observables like $(g-2)_{\mu}$
 - Lepton Universality & helicity suppression in $R_M^{e/\mu} = \Gamma(M \to e\nu)/\Gamma(M \to \mu\nu)$ with $M = \pi, K$

Intensity & precision frontier experimental options

Iight leptons & hadrons

- ▶ e.g. MEG, NA62
- Iower energy, lower cost, very large statistics attainable
- less variety of processes, no access to heavy-flavour physics
- smaller size NP effects
- heavy leptons & hadrons
 - ► BES, LHCb, BelleII, SuperB
 - ► higher energy, higher cost, statistics limited by power consumption & cost
 - larger size NP effects
 - larger variety of processes, access also to heavy-flavour physics
 - e^+e^- collisions \rightarrow well defined initial state, clean events

NP signals in hadrons and leptons at the intensity frontier

hadrons

- NP amplitudes compete with SM amplitudes in forbidden / suppressed / mixing&CPV processes
- CPV in B mesons ideal because CKM matrix makes it maximal and relatively well calculable
- ▶ in SM, D mixing and CPV are smaller and less precisely predicted
- theory QCD-related uncertainties
 - important is several cases (*D*'s, $b \rightarrow s\gamma$, ϵ_K) (lattice QCD progress dependence)
 - quite small in some cases (CPV in $B \rightarrow J/\psi K_S, K \rightarrow \pi \nu \nu$)

(charged) leptons

- (charged) Lepton Flavour Violation
 - clean, mostly QCD-free SM prediction, unambigous NP signal detection
 - NP effects less direct than for hadrons (typically, unknown mass-scale heavy neutrino sector)
 - possibly related to neutrino mixing, esp. θ_{13}
- asymmetric $\Upsilon(4S)$ Super-Flavour-Factories best for most measurements (tau leptons included)
- additional valuable option is running at the charm / tau production threshold

Lattice QCD progress, V.Lubicz, Arcetri, Feb 2010, 1

Lattice QCD progress, V.Lubicz, Arcetri, Feb 2010, 2

<u>Enpere</u>	IV Villa Mor Monte Po 13 - 15			
Hadronic	Current latt.	6 TFlop	60 TFlop	1-10 PFlop
matrix	error	Year	Year	Year
element	(2006)	[2009]	[2011 LHCb]	[2015 SuperB]
$f^{K\pi}(0)$	0.9%	0.7%	0.4%	< 0.1%
	$(22\% \text{ on } 1-f_+)$	<u>(17% on 1-f₊)</u>	(10% on 1-f ₊)	(2.4% on 1-f ₊)
В _к	11%	5%	3%	1%
f _B	14%	3.5 - 4.5%	2.5 - 4.0%	1 – 1.5%
$f_{Bs}B_{Bs}^{1/2}$	13%	4 - 5%	3 - 4%	1 – 1.5%
Æ	5%	3%	1.5 - 2 %	0.5 – 0.8 %
<u>ح</u>	(26% on ξ-1)	<u>(18% on ξ-1)</u>	<u>(9-12% on ξ-1)</u>	<u>(3-4% on ξ-1)</u>
$\mathcal{F}_{P} \to D/D^{*\mathrm{h}}$	4%	2%	1.2%	0.5%
$D \rightarrow D/D \cdot IV$	$(40\% \text{ on } 1-\mathcal{F})$	$(21\% \text{ on } 1-\mathcal{F})$	(13% on 1- <i>F</i>)	(5% on 1- <i>F</i>)
$f_{+}^{B\pi},\ldots$	11%	5 .5 - 6.5%	4 - 5%	2-3%
$T_1^{B \rightarrow K * / \rho}$	13%			3-4%

Lattice QCD progress, V.Lubicz, Arcetri, Feb 2010, 3

THE 2009 STATUS REPORT								
Hadronic matrix element	Lattice error in 2006	Lattice error in 2009	6 TFlop Year [2009]	60 TFlop Year [2011 LHCb]	1-10 PFlop Year [2015 SuperB]			
$f_{+}^{K\pi}(0)$	0.9%	0.5%	0.7%	0.4%	< 0.1%			
Â _K	11%	5%	5%	3%	1%			
f _B	14%	5%	<mark>3.5</mark> - 4.5%	2.5 - 4.0%	1 – 1.5%			
$f_{\rm Bs}B_{\rm Bs}^{1/2}$	13%	5%	4 - 5%	3 - 4%	1 – 1.5%			
ξ	5%	2%	3%	1.5 - 2 %	0.5 – 0.8 %			
$\mathcal{F}_{\mathrm{B} \to \mathrm{D/D*lv}}$	4%	2%	2%	1.2%	0.5%			
$f_{+}^{B\pi},$	11%	11%	<mark>5.5</mark> - 6.5%	4 - 5%	2-3%			
$T_1^{B \to K^{*/\rho}}$	13%	13%			3-4%			
The exp	ected acc	uracy ha	s been rea	i <mark>ched</mark> ! (exce	pt for Vub)			

SuperB project features

- ♦ Y(4S)-peak asymmetric energy e⁺e⁻ Super Flavor Factory
- can also run at the charm threshold by design
- 80% polarized electron beam further defines the already clean initial e^+e^- state
- $L \approx 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ around $\Upsilon(4S)$ peak, $L \approx 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ at tau/charm threshold
 - > $\Upsilon(4S)$: coherent *B* mesons & time-dep. measurements, charm hadrons, tau leptons
 - charm threshold: coherent D mesons & time-dep. measurements, tau leptons
- Physics program
 - maximize new physics sensitivity and variety of physics measurements
 - precision high statistics measurements & searches on heavy quarks and tau leptons
 - but also precision EW, light new physics searches, ISR measurements, spectroscopy
 - e^+e^- collisions ideal for measurements in almost every energy-accessible topic
- data-taking: beginning of 2017
 - ▶ plan: 75 ab⁻¹ around $\Upsilon(4S)$ (+ continuum), 0.5 ab⁻¹ at charm threshold, 1 ab⁻¹ at $\Upsilon(5S)$

What SuperB can do

New Physics (NP) expected beyond Standard Model, perhaps at $\Lambda \sim 1 \text{ TeV}$

SuperB can search for NP, in a complementary & competivive way with LHC, MEG and others

- case 1 LHC finds New Physics (therefore determining A)
 - SuperB can study NP flavour structure, but can also be sensitive to larger scales than LHC

case 2 the NP scale is beyond the LHC reach

- SuperB can look for indirect NP signals up to $\Lambda \sim 10$ TeV and more
- SuperB vs. Bellell
 - competition worked fine for BABAR and Belle
 - ► BelleII begins data-taking ~2 years earlier
 - SuperB has beam polarization, charm threshold ability, larger design luminosity,
- LHCb and MEG partly competitive and partly complementary
 - some B final states are only measurable by SuperB (with neutrals or missing momentum)
 - SuperB can test tau LFV, CPV, EDM, g-2, can search for light new physics
 - SuperB can do useful measurements on entangled charm mesons decays

SuperB physics studies initiated in ~2005

- 2005 Hewett et al., The Discovery Potential of a Super B factory, hep-ph/0503261
- 2007 Conceptual Design Report, arXiv:0709.0451 [hep-ex]
- 2008 Valencia retreat proceedings, arXiv:0810.1312 [hep-ex]
- 2010 SuperB white paper: Physics, arXiv:1008.1541 [hep-ex]
- 2011 The impact of SuperB on flavour physics, arXiv:1109.5028v2 [hep-ex]

Two recent workshops on high intensity frontier measurements

- Workshop on charm physics at threshold (21 23, October, 2011, IHEP, China) http://bes3.ihep.ac.cn/conference/threshold2011/index.html
- Fundamental Physics at the Intensity Frontier (Nov 30-Dec 2, 2011, Rockville, MD USA) http://www.intensityfrontier.org/

SuperB golden modes

(indirect searches for NP need 1) good exp. precision & 2) good theory understanding)

- **B**_{u,d} Physics
 - $\blacklozenge B^+ \to \tau^+ \nu, \quad B^+ \to \mu^+ \nu, \quad B^+ \to K^{(*)+} \nu \overline{\nu}, \quad b \to s \gamma, \quad b \to s \ell \ell$
 - precision sin 2 β measurements, in particular $B \rightarrow \eta' K_S^0, \rightarrow K_S^0 \pi^0 \gamma$

τ Physics

• Lepton flavour violation in tau decays: especially $\tau \to \mu \gamma$ and $\tau \to 3\ell$

Charm Physics

• D^0 mixing parameters and *CP* violation

B_s Physics

- Semi-leptonic CP asymmetry A^s_{SL}
- $B_{\rm S} \to \gamma \gamma$

Other Physics

- Precision EW measurement at $\sqrt{s} = 10.58 \text{ GeV}/c^2$ with polarized beams
- Direct searches for non-standard light Higgs bosons, Dark Matter and Dark Forces

SuperB golden modes compared

$$\mathcal{B}(\mathbf{B} \to \tau \nu)$$

- helicity suppressed, reasonably clean SM prediction
 - within SM, rate proportional to $|V_{ub}|^2$ and f_B^2
- NP charged Higgs interferes negatively, reducing $\mathcal{B}(B \to \tau \nu)$
 - ▶ NP effect is larger in $\mathcal{B}(B \to \tau \nu)$ vs. $\mathcal{B}(B \to \mu \nu)$
- non trivial selection and bkg suppression because of neutrinos in final state
- SuperB offers ideal conditions
 - clean events, hermetic detector, well defined initial state, just 2 Bs
 - → tag other side with reconstructed B
 - study "extra-energy" distribution with data for bkg subtraction
- 3% measurement of SM prediction possible

$\mathcal{B}(B \rightarrow \tau \nu)$ constrains NP charged Higgs parameters

r_H = 𝔅(𝔅 → τν)/𝔅_{SM}(𝔅 → τν) exclusion plots assume measurement = SM prediction
 ATLAS exclusion limit for 30 fb⁻¹ at 14 TeV computed using arXiv:0901.0512

W.Altmannshofer et al., arXiv:0902.0160 [hep-ph]: combining 4 observables provides good test of modified *Z*-penguin contributions, non-MFV interactions, RH currents, ...

From ~10% to ~1% experimental precision on CKM

CKM fit in 2006

♦ bands show 95% constraints, 2006 values assumed for the SuperB fit

A.Lusiani (INFN & SNS, Pisa)

Physics at SuperB

From ~10% to ~1% experimental precision on CKM

SuperB Measures the sides and angles of the Unitarity Triangle

Super Flavour Factories can complement LHC in measuring squark matrix

- In many NP scenarios the energy frontier experiments will probe the diagonal elements of mixing matrices.
- > Flavour experiments are required to probe off-diagonal ones.

A.Lusiani (INFN & SNS, Pisa)

Physics at SuperB

Super Flavour Factories can complement LHC in measuring squark matrix (2)

- e.g. MSSM with generic squark mass matrices.
- Use Mass insertion approximation with $m_{\tilde{q}} \sim m_{\tilde{g}}$ to constrain couplings:

$$(\delta_{ij}^q)_{AB} = \frac{(\Delta_{ij})_{AB}^q}{m_{\widetilde{q}}^2}$$

• Can constrain the δ^{d}_{ij} 's using $\mathcal{B}(B \to X_s \gamma)$

$$\mathcal{B}(B \to X_s \ell^+ \ell^-)$$

 $\mathcal{A}_{CP}(B \to X_s \gamma)$

SuperB Y(4S) B Physics reach, 1

Observable	B Factories (2 ab^{-1})	Super <i>B</i> (75 ab ⁻¹)	
$\sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)	
$\cos(2\beta) \; (J/\psi \; K^{*0})$	0.30	0.05	
$sin(2\beta)$ (Dh^0)	0.10	0.02	
$\cos(2\beta)$ (Dh ⁰)	0.20	0.04	
$S(J/\psi \pi^0)$	0.10	0.02	Ľ
$S(D^+D^-)$	0.20	0.03	
$S(\phi K^0)$	0.13	0.02 (*)	
$S(\eta' K^0)$	0.05	0.01 (*)	
$S(K_S^0K_S^0K_S^0)$	0.15	0.02 (*)	
$S(K_S^0\pi^0)$	0.15	0.02 (*)	
$S(\omega K_S^0)$	0.17	0.03 (*)	
$S(f_0K_S^0)$	0.12	0.02 (*)	
γ (B \rightarrow DK, D \rightarrow CP eigenstates)	$\sim 15^{\circ}$	2.5°	
γ ($B \rightarrow DK$, $D \rightarrow$ suppressed stat	es) $\sim 12^{\circ}$	2.0°	
$\gamma (B \rightarrow DK, D \rightarrow multibody states)$	$\sim 9^{\circ}$	1.5°	
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1–2°	
$\alpha (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	
$\alpha (\mathbf{B} \to \rho \rho)$	$\sim 7^{\circ}$	1–2° (*)	
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2 °	
α (combined)	$\sim 6^{\circ}$	1–2° (*)	
$2\beta + \gamma \left(D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp} \right)$	20°	5°	

exp. syst. limited

theory syst. limited

most measurements with π^0 , γ , ν , many K^0 's cannot be done at LHCb

SuperB Υ (4S) B Physics reach, 2

Observable	B Factories (2 ab^{-1})	Super <i>B</i> (75 <i>ab</i> ⁻¹)
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
V _{cb} (inclusive)	1% (*)	0.5% (*)
V _{ub} (exclusive)	8% (*)	3.0% (*)
$\left V_{ub}\right $ (inclusive)	8% (*)	2.0% (*)
$\mathcal{B}(B o au u)$	20%	4% (†)
$\mathcal{B}(B o \mu \nu)$	visible	5%
$\mathcal{B}(B o D au \nu)$	10%	2%
$\mathcal{B}(B o \rho \gamma)$	15%	3% (†)
$\mathcal{B}(B o \omega \gamma)$	30%	5%
$A_{C\!P}(B o K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b ightarrow s \gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_S^0\pi^0\gamma)$	0.15	0.02 (*)
$S(\rho^0\gamma)$	possible	0.10
$A_{CP}(B \to K^* \ell \ell)$	7%	1%
$A^{FB}(B \to K^* \ell \ell) s_0$	25%	9%
$A^{FB}(B \to X_{s}\ell\ell)s_{0}$	35%	5%
$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$\mathcal{B}(B \to \pi v \overline{v})$	-	possible

- † exp. syst. limited
- * theory syst. limited

most measurements with π^0 , γ , ν , many K^0 's cannot be done at LHCb

SuperB Υ (5S) B_s Physics reach

Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
ΔΓ	0.16 <i>ps</i> ⁻¹	0.03 ps ⁻¹
Г	0.07 ps ⁻¹	0.01 ps ⁻¹
β_{s} from angular analysis	20 °	8 °
A ^s	0.006	0.004
A _{CH}	0.004	0.004
$\mathcal{B}(B_{S} \to \mu^+ \mu^-)$	-	< 8 × 10 ⁻⁹
$ V_{td}/V_{ts} $	0.08	0.017
$\mathcal{B}(B_{S} o \gamma \gamma)$	38%	7%
β_{s} from $J/\psi\phi$	10°	3 °
β_{s} from $B_{s} \rightarrow K^{0}\overline{K}^{0}$	24°	11 °

• LHCb in general is more competitive for B_s measurements, but there are a few exceptions

SuperB Tau Physics NP probes

SuperB 10–100 times more sensitive than BABAR to tau LFV modes

SuperB beam polarization effects on $\tau \rightarrow \mu \gamma$ LFV search

SuperB $\tau \rightarrow \ell \gamma$ constraints on LHT model with breaking scale at 500 GeV

SuperB reach from arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics

NP predictions from M. Blanke et al. arXiv:0906.5454

Tau g-2 at SuperB

• MSSM can shift muon g-2 by about the presently observed discrepancy $\Delta a_{\mu} \approx 3.10^{-9}$

Δa_{μ} and $\Delta a_{ au}$ for various SPS points							
SPS	1a	1 b	2	3	4	5	
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	
(specific parameters can produce Δa_{τ} as high as 1.10 ⁻⁵)							

- ♦ J.Bernabeu et al., JHEP098P1108 estimate SuperB $\sigma(a_{\tau}) = [0.75 1.7] \cdot 10^{-6}$
 - assuming 100% electron beam polarization
 - SuperB measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - however, Δa_{τ} from high energy NP contributions is constant for small q^2
 - ► Re $[a_{\tau}(q^2)]$ measured from τ polar angle distribution or transv. & long. polarization

• considering detector uncertainties and 80% polarization (prelim.) \rightarrow SuperB $\sigma(a_{\tau}) \sim 2.4 \cdot 10^{-6}$

Tau EDM at SuperB

- ♦ $|d_e| < 1.6 \cdot 10^{-27} e \text{ cm}$ at 90% CL, 10.1103/PhysRevLett.88.071805 / PDG10
- most NP models expect linear scaling with lepton mass, $|d_{\tau}| \propto (m_{\tau}/m_e)|d_e|$
- SuperB 2010 Physics White Paper reviews NP models expectations and concludes that: $|d_e|$ upper limit $\rightarrow |d_{\tau}^{NP}| < 10^{-22} e \text{ cm}$
- SuperB actually measures $d_{\tau}(q^2)$ form factor from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - however, high energy NP contributions are constant for small q^2
- beam polarization permits measurements based on single tau distributions
- ♦ J.Bernabeu et al., arXiv:0707.1658v1 [hep-ph], estimate SuperB $\sigma(d_{\tau}) \approx 7.2 \cdot 10^{-20} e \text{ cm}$
 - 100% electron beam polarization, no uncertainty
 - only $\tau \rightarrow \pi \nu$, $\tau \rightarrow \rho \nu$, no reconstruction uncertainty
- ♦ when considering also detector related uncertainties (prelim.) Super $B \sigma(d_{\tau}) \approx 10 \cdot 10^{-20} e \text{ cm}$ (however by combining other tau decay channels one can further improve)
- extrapolating published Belle result Phys. Lett. B551, 16 (2003), hep-ex/0210066
 - → SuperB $\sigma(d_{\tau}) \approx 17 34 \cdot 10^{-20} e \text{ cm}$ (both real and imaginary parts)

no beam polarization used, but all tau decay channels combined

Tau CPV at SuperB

SuperB D^0 -mixing reach using $\Upsilon(4S)$ data

Parameter	$x \times 10^3$	$y \times 10^3$	$\delta_{K\pi}$ (°)	$\delta_{K\pi\pi}$ (°)
σ (stat)	0.18	0.11	1.3	2.7
σ (stat) +(syst)	0.42	0 17	2.2	+3.3
GuperB 75 ab ^{−1} a measure D strong	nt Υ (4<i>S</i>) wi phases or	th 0.5 ab ⁻¹	D's at cha	-3.4 reshold ru rm thresho
SuperB 75 ab ⁻¹ a measure D strong Parameter	t Υ (4 <i>S</i>) wi phases or $x \times 10^3$	th 0.5 ab ⁻¹ th entangled $y \times 10^3$	b charm th D's at charm $\delta_{K\pi}$ (°)	-3.4 reshold ru rm thresho $\delta_{K\pi\pi}$ (°)
SuperB 75 ab ⁻¹ a measure D strong Parameter σ (stat)	t Υ (4 <i>S</i>) wi phases or $x \times 10^3$ 0.17	th 0.5 ab ⁻¹ th entangled $y \times 10^3$ 0.10	$\delta_{K\pi}$ (°) 0.9	-3.4 areshold ru arm thresho $\delta_{K\pi\pi}$ (°) 1.1

D^0 mixing and CPV measurements on entangled D's at charm threshold

M.Rama, Workshop on Charm Physics at threshold, Beijing 21-23 October 2011

- Flavor tag at DD threshold provides identical time-dependence than at Υ(4S) using D* tagging, and less events, although in a different environment
- $D\overline{D}$ threshold is unique to provide CP, $K\pi$ and $Ks\pi\pi$ tags
- Variation of Δt resolution and geometrical acceptance vs CM boost was evaluated
- Estimated the impact on physics with 2-body decays
 - Combined fit to all 2-body double-tags allows determination of x, y, arg(q/p), |q/p|
 - > Best sensitivity at $\Psi(3770)$ for intermediate boost, $\beta \gamma \approx 0.3-0.6$

Parameter	Sensitivity @ Y(4S) with time resolution, no mistag. 75 ab ⁻¹	Best sensitivity $@ \psi(3770)$ with time resolution ($\beta\gamma$ =0.56), no mistag. 0.5 ab ⁻¹				
x	0.017%	0.11%				
У	0.008%	0.05%	Relative effect of flavor mistag			
Arg(q/p)	0.8 deg	4.8 deg	similar at $\Psi(3770)$ and $I(45)$			
q/p	0.5%	3.7%				

> error per ab⁻¹ at Y(3770) $\sim \frac{1}{2}$ error per ab⁻¹ at Y(4S) (2-body only, no mistag)

> error at $\Psi(3770)$ [0.5ab⁻¹] ~ 6x error at $\Upsilon(4S)$ [75ab⁻¹] (2-body only, no mistag)

Precise EW tests with polarized beams (M.Roney, SuperB Dec 2011 meeting)

Polarised e- beam yields product of the neutral axial-vector coupling of the electron and vector coupling of the final-state fermion via $Z-\gamma$ interference:

$$A_{LR} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle$$

$$\langle Pol \rangle = 0.5 \left\{ \left(\frac{N_R^{e-} - N_L^{e-}}{N_R^{e-} + N_L^{e-}} \right)_R - \left(\frac{N_R^{e-} - N_L^{e-}}{N_R^{e-} + N_L^{e-}} \right)_L \right\}$$

$$g_A^e = T_3^e = 1/2 \qquad g_V^f = T_3^f - 2Q_f \sin^2 \theta_W$$

Measure g_{Vb} and test LEP A_{FB}^{b} anomaly

Measurement of g_V^b

- SM: -0.34372 +0.00049-.00028
- A_{FB}^{b} : -0.3220±0.0077
- with 0.5% polarization systematic and 0.3% stat error, SuperB can have an error of ± 0.0021

Measure weak charged vector couplings ratios

take ratios of μ,τ,c,b A_{LR} so that of the electron cancels polarisation systematic errors and the electron axial-vector coupling: stat. error dominated

	SM (Mh=125GeV)	LEP	SuperB error
$g_V^\mu / g_V^ au$	1	0.997 +/- 0.068	$\sim 2\%$ from tau stats
g_V^c / g_V^{lepton}	5.223 +/-	-4.991 +/- 0.074	~1% muon stats +/-0.05
g_V^b / g_V^{lepton}	9.357 +/-	8.58+/- 0.16	~1% from mu stats +/- 0.08

Measure sin θ_W energy evolution with A_{LR} for μ, τ , charm and b

- plot adapted by A.Bevan from QWeak proposal (JLAB E02-020)
- precition not yet evaluated at charm threshold

Sensitivity of SuperB to specific NP models

list of NP models, full description in

- W.Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, arXiv:0909.1333 [hep-ph]
- arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- AC (SUSY) abelian model by Agashe and Carone based on a U(1) flavour symmetry
- RVV2 (SUSY) non-abelian model by Ross, Velasco-Sevilla and Vives
- AKM (SUSY) non-abelian model by Antusch, King and Malinsky
- δLL (SUSY) purely left-handed currents with CKM-like mixing angles
- FBMSSM flavour-blind MSSM
- GUT-CMM SUSY GUT
- SSU(5) SUSY GUT SU(5)
- LHT Littlest Higgs with T-parity
- RS Randall-Sundrum

Sensitivity of flavour golden modes to specific NP models

Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH			SUS	Y	n37
	high $\tan \beta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
$egin{array}{c} au o \mu\gamma \ au o \ell\ell\ell \end{array} \end{array}$						***	***	***	*	***	***
$egin{aligned} B & o au u, \mu u \ B & o K^{(*)+} u \overline{ u} \ S & o K^0_S \pi^0 \gamma \end{aligned}$	* * *(CKM)		*	***	***		*	*	*	*	*
S in other penguin modes $A_{CP}(B \rightarrow X_s \gamma)$ $BB(B \rightarrow X_s \gamma)$		بلد بلد بلد	* * *(CKM) * * *		***		* * * *	**	* *	*** ***	* * * * * *
$BR(B \to X_s \ell \ell) BR(B \to K^{(*)} \ell \ell \text{ (FB Asym)}$			*	*	*		*	*	*	***	***
$egin{array}{llllllllllllllllllllllllllllllllllll$							*** ***	***	*** ***	*** *	***

CPV in Charm	**						***	*	*	*	*

 \checkmark = SuperB can measure this

More information on the golden matrix can be found in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.

SuperB reach compared (1), Isidori/Nir/Perez, Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

Observable	SM prediction	Theory error	Present result	Future error	Future Facility
$ V_{US} $ $[K \to \pi \ell \nu]$	input	$0.5\% ightarrow 0.1\%_{Latt}$	0.2246 ± 0.0012	0.1%	K factory
$ V_{cb} [B \to X_c \ell \nu]$	input	1%	$(41.54\pm0.73)\times10^{-3}$	1%	SuperB 50 ab ⁻¹
$ V_{ub} [B \to \pi \ell \nu]$	input	$10\% ightarrow 5\%_{Latt}$	$(3.38 \pm 0.36) imes 10^{-3}$	4%	SuperB 50 ab ⁻¹
γ [$B \rightarrow DK$]	input	< 1°	$(70^{+27}_{-30})^{\circ}$	3 °	LHCb
S _{Bd} →ψK	$sin(2\beta)$	<i>≲</i> 0.01	0.671 ± 0.023	0.01	LHCb
$S_{B_S \to \psi \phi}$	0.036	≲0.01	$0.81^{+0.12}_{-0.32}$	0.01	LHCb
$S_{B_d \to \phi K}$	$sin(2\beta)$	≲0.05	0.44 ± 0.18	0.1	LHCb
$S_{B_S \to \phi \phi}$	0.036	≲0.05	—	0.05	LHCb
$S_{B_d \to K^* \gamma}$	few $ imes$ 0.01	0.01	-0.16 ± 0.22	0.03	SuperB 50 ab ⁻¹
$S_{B_S o \phi \gamma}$	few $ imes$ 0.01	0.01	—	0.05	LHCb
A_{SI}^d	-5×10^{-4}	10 ⁻⁴	$-(5.8 \pm 3.4) \times 10^{-3}$	10 ⁻³	LHCb
$A_{SL}^{\tilde{s}}$	2×10^{-5}	< 10 ⁻⁵	$(1.6 \pm 8.5) \times 10^{-3}$	10 ⁻³	LHCb

SuperB reach compared (2), Isidori/Nir/Perez, Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

Observable	SM prediction	Theory error	Present result	Future error	Future Facility
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	SuperB 50 ab ⁻¹
$\mathscr{B}(B \to \tau \nu)$	1×10^{-4}	$20\% ightarrow 5\%_{Latt}$	$(1.73 \pm 0.35) imes 10^{-4}$	5%	SuperB 50 ab ⁻¹
$\mathscr{B}(B o \mu \nu)$	4×10^{-7}	$20\% ightarrow 5\%_{Latt}$	< 1.3 × 10 ⁻⁶	6%	SuperB 50 ab ⁻¹
$\mathcal{B}(B_{S} \to \mu^+ \mu^-)$	3×10^{-9}	$20\% \rightarrow 5\%_{Latt}$	< 5 × 10 ⁻⁸	10%	LHCb
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	1×10^{-10}	$20\% ightarrow 5\%_{Latt}$	< 1.5 × 10 ⁻⁸	[?]	LHCb
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)_{q_2^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B \to K v \overline{v}$	4×10^{-6}	$20\% ightarrow 10\%_{Latt}$	$< 1.4 \times 10^{-5}$	20%	SuperB 50 ab ⁻¹
q/p _{D-mixing}	1	< 10 ⁻³	$(0.86^{+0.18}_{-0.15})$	0.03	SuperB 50 ab ⁻¹
ϕ_D	0	< 10 ⁻³	$(9.6^{+8.3}_{-9.5})^{\circ}$	2 °	SuperB 50 ab ⁻¹
$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$	$8.5 imes 10^{-11}$	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory
$\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})$	2.6×10^{-11}	10%	$< 2.6 \times 10^{-8}$	[?]	K factory
$R^{(e/\mu)}(K o \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498 \pm 0.014) imes 10^{-5}$	0.1%	K factory
$\mathcal{B}(t \to c Z, \gamma)$	$O(10^{-13})$	$O(10^{-13})$	< 0.6 × 10 ⁻²	$O(10^{-5})$	LHC (100 fb ⁻¹)

SuperB vs. LHCb for 5 NP models (P.Paradisi, SuperB meeting, Dec 2011)

	SSU(5)	AC	RVV2	AKM	δLL	FBMSSM	
$S_{\phi K_S}$	***	***	••		***	***	SuperB
${\cal A}_{ m CP}\left(B ightarrow X_{{\cal S}}\gamma ight)$					***	***	
$B ightarrow K^{(*)} u ar{ u}$							
$ au o \mu \gamma$	***	***	***		***	***	
$D^0-ar{D}^0$		***					SuperB
$A_{7,8}(B ightarrow K^*\mu^+\mu^-)$					***	***	vs.
$A_9(B ightarrow K^*\mu^+\mu^-)$							<i>RHCP</i>
$\mathcal{S}_{\psi\phi}$	***	***	***	***			інср
$B_{s} ightarrow \mu^{+} \mu^{-}$	***	***	***	***	***	***	тнср
€K	***		***	***			
$K^+ o \pi^+ u ar{ u}$							
$K_L o \pi^0 u ar u$							
$\mu ightarrow oldsymbol{e} \gamma$	***	***	***	***	***	***	
$\mu + \textit{N} ightarrow \textit{e} + \textit{N}$	***	***	***	***	***	***	
d _n	***	***	***	***	••	***	
d _e	***	***	***	••		***	
$(g-2)_{\mu}$	***	***	***	••	***	***	

elaboration using information in W.Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, arXiv:0909.1333 [hep-ph]

Conclusion

Super*B* can search for new physics effects in a competitive and complementary way with the currently operated and planned facilities. Super*B* is designed for maximum versatility and includes beam polarization and the ability of running both around the $\Upsilon(4S)$ peak and at the charm treshold. Its features make it uniquely suited for a large range of new physics searches and precision tests of the standard model.